Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
River networks serve as conduits for dissolved organic matter (DOM) and carbon (DOC) from inland to coastal waters. Human activities and climate change are altering DOM sources, causing hydrological and biogeochemical shifts that impact DOC concentrations and changing the transport and transformation of DOM and DOC. Here, we synthesize current knowledge of changing DOM sources, DOC concentrations, and the associated hydrological and biogeochemical changes during transport along inland-to-coastal gradients, focusing on impacts to coastal and estuarine DOM and DOC. We project that continued land-use changes, hydrological management, and sea-level rise will result in more microbial and labile DOM, higher DOC concentrations, and an overall decoupling of DOC quantity and DOM quality. Understanding how these changes vary among river networks is essential to forecast coastal and estuarine water quality, ecosystem health, and global carbon cycling.more » « lessFree, publicly-accessible full text available June 1, 2026
-
This dataset contains field measurements taken during water sampling from 100 urban stream locations in the greater Miami, Florida metropolitan area. Field collection took place during five synoptic sampling events: Summer 2021 (Wet; July 8 to July 27), Fall 2021 (Wet; September 27 to October 7), Winter 2022 (Dry; January 3 to January 13), Spring 2022 (Dry; April 7 to April 23), and Summer 2022 (Wet; June 1 to June 13) to capture spatial and seasonal variation in stream conditions (specific conductivity, water temperature, dissolved oxygen, pH). Filtered stream samples were analyzed for dissolved organic carbon concentration and characteristics, available in a separate dataset. These data were collected as part of the Carbon in Urban Rivers Biogeochemistry (CURB) Project. Detailed field data and site data are published separately and can be linked using the “curbid” and “synoptic_event” columns in each dataset.more » « less
-
This dataset contains dissolved organic carbon concentrations from surface water samples collected at 100 urban stream and canal locations in the greater Miami, Florida metropolitan area. Samples were collected five times across different seasons to capture spatial and seasonal variation in DOC concentration. These events include the wet seasons of 2021 and 2022, as well as the dry season of 2022, specifically: Summer 2021 (Wet; July 8 to July 27), Fall 2021 (Wet; September 27 to October 7), Winter 2022 (Dry; January 3 to January 13), Spring 2022 (Dry; April 7 to April 23), and Summer 2022 (Wet; June 1 to June 13). These data were collected as part of the Carbon in Urban Rivers Biogeochemistry (CURB) Project. Detailed field data and site data are published separately and can be linked using the “curbid” and “synoptic_event” columns in each dataset.more » « less
-
This dataset contains dissolved organic matter (DOM) characteristics from surface water samples collected at 100 urban stream and canal locations in the greater Miami, Florida metropolitan area. Samples were collected five times across different seasons to capture spatial and seasonal variation in DOC concentration. These events include the wet seasons of 2021 and 2022, as well as the dry season of 2022, specifically: Summer 2021 (Wet; July 8 to July 27), Fall 2021 (Wet; September 27 to October 7), Winter 2022 (Dry; January 3 to January 13), Spring 2022 (Dry; April 7 to April 23), and Summer 2022 (Wet; June 1 to June 13). Fluorescent optical properties were measured on filtered water samples to understand the chemical composition of DOM. Excitation-Emission Matrices (EEMs) were measured using a Horiba Aqualog spectrometer. DOM characteristics were quantified using both standard fluorescence and absorbance metrics as well as through parallel factor (PARAFAC) analysis. These data were collected as part of the Carbon in Urban Rivers Biogeochemistry (CURB) Project. Detailed field data and site data are published separately and can be linked using the “curbid” and “synoptic_event” columns in each dataset.more » « less
An official website of the United States government
